11111

COURSE INTRODUCTION AND APPLICATION INFORMATION


se.cs.ieu.edu.tr

Course Name
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
Fall/Spring
Prerequisites
None
Course Language
Course Type
Elective
Course Level
-
Mode of Delivery -
Teaching Methods and Techniques of the Course
Course Coordinator
Course Lecturer(s)
Assistant(s) -
Course Objectives
Learning Outcomes The students who succeeded in this course;
  • Will be able to explain the main features of Production Planning Systems
  • Will be able to define all stages of a manufacturing system from purchasing to shipping with real-life examples
  • Will be able to analyze the manufacturing system operations and corresponding computer application components by observations at on-site factory visits
  • Will be able to comprehend the related modules of ERP systems used in Computer Integrated Manufacturing
Course Description

 



Course Category

Core Courses
Major Area Courses
X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Required Materials
1 Production Systems and Production Management
2 (Production Systems Classifications, Contemporary application samples Formation of project groups, at most 5 students per group
3 Just in Time manufacturing (JIT), made to order manufacturing
4 Production Planning and Control Selecting and assigning Production Case studies to the groups
5 Order management, Purchasing Management, Quality control in receiving goods Proposal submissions
6 Product Trees and recipes, Route Management, Entering data like Suppliers, products, raw materials, recipes to the Production system
7 Production Capacity problems, machine layout planning 1. Progress Report submission,
8 Defining Job and Cost centers,
9 Running an instance of Material Requirements Planning (MRP) Project Presentation of the groups
10 Reading and analyzing the outcomes of MRP, producing work orders
11 Purchasing, inventory and shipment management; Quality control at shipping,
12 Field visits 2. Progress Report submission
13 Field visits
14 Field visits
15 The Final Presentation of the Project Groups
16 Review of the Semester  
Course Notes/Textbooks Groover, Mikell P. (2007). Automation, Production Systems, and C.I.M. PrenticeHall: Englewood Cliffs, N.J.
Suggested Readings/Materials

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
1
10
Laboratory / Application
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
2
20
Presentation / Jury
2
30
Project
Seminar / Workshop
Oral Exam
Midterm
Final Exam
1
40
Total

Weighting of Semester Activities on the Final Grade
60
Weighting of End-of-Semester Activities on the Final Grade
40
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
(Including exam week: 16 x total hours)
16
2
32
Laboratory / Application Hours
(Including exam week: 16 x total hours)
16
Study Hours Out of Class
15
1
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
2
5
Presentation / Jury
2
9
Project
Seminar / Workshop
Oral Exam
Midterms
Final Exams
1
15
    Total
90

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1 Be able to define problems in real life by identifying functional and nonfunctional requirements that the software is to execute X
2 Be able to design and analyze software at component, subsystem, and software architecture level X
3 Be able to develop software by coding, verifying, doing unit testing and debugging
4 Be able to verify software by testing its behaviour, execution conditions, and expected results
5 Be able to maintain software due to working environment changes, new user demands and the emergence of software errors that occur during operation
6 Be able to monitor and control changes in the software, the integration of software with other software systems, and plan to release software versions systematically
7 To have knowledge in the area of software requirements understanding, process planning, output specification, resource planning, risk management and quality planning
8 Be able to identify, evaluate, measure and manage changes in software development by applying software engineering processes
9 Be able to use various tools and methods to do the software requirements, design, development, testing and maintenance
10 To have knowledge of basic quality metrics, software life cycle processes, software quality, quality model characteristics, and be able to use them to develop, verify and test software
11 To have knowledge in other disciplines that have common boundaries with software engineering such as computer engineering, management, mathematics, project management, quality management, software ergonomics and systems engineering X
12 Be able to grasp software engineering culture and concept of ethics, and have the basic information of applying them in the software engineering
13

Be able to use a foreign language to follow related field publications and communicate with colleagues

X

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 

İzmir Ekonomi Üniversitesi | Sakarya Caddesi No:156, 35330 Balçova - İZMİR Tel: +90 232 279 25 25 | webmaster@ieu.edu.tr | YBS 2010